

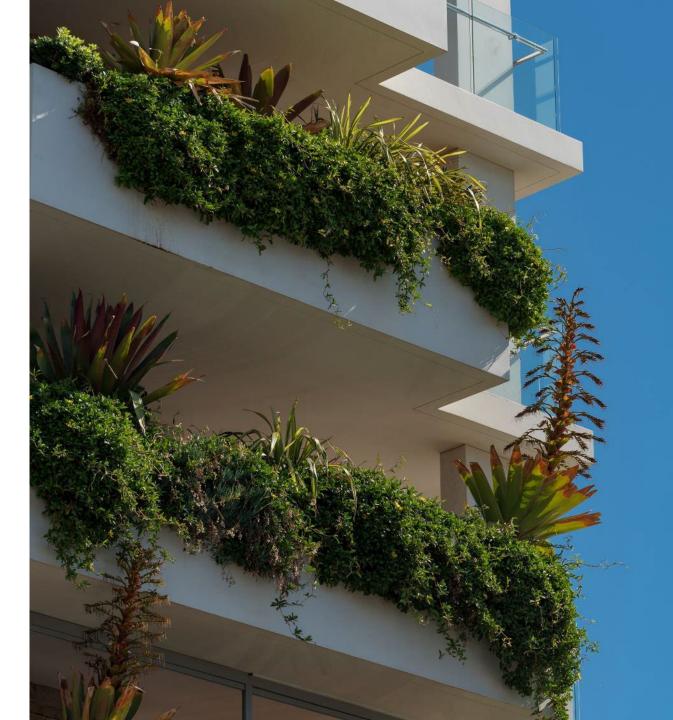
SMI Insurance Task Force Report

Opportunities for the insurance industry to support the transition

Futureset

🧀 MarshMcLennan

Sustainable Markets Initiative


Executive summary

Sector deep-dives

2

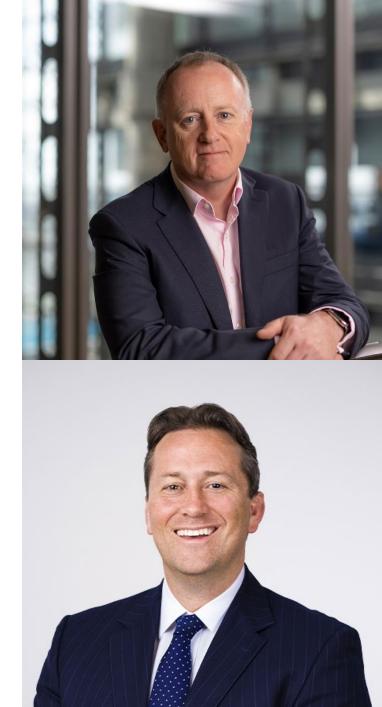
Recommendations

Foreword

The insurance industry is uniquely placed to support the transition to a sustainable future. For decades, our global insurance industry has been supporting individuals, businesses and governments in understanding, mitigating and managing the impact of increasingly severe climate-exacerbated disasters. Additionally, we play an important role in supporting investment in and development of renewable energy and climate innovation, initiatives key to realising the transition pathway and net zero goals.

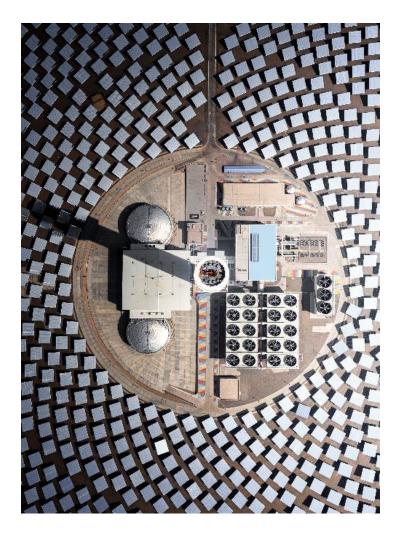
This report, developed by Marsh McLennan in partnership with the Sustainable Markets Initiative Insurance Task Force (SMI ITF), seeks to provide greater clarity as to the key risks and challenges businesses across multiple sectors face in the transition and crucially, how insurers can support them. We hope that by identifying areas for partnership and collaboration, the ITF can drive and deliver innovative insurance solutions to address these challenges.

Our research, carried out by interviewing C-Suite and Heads of Risk Management from various real economy firms, identifies seven specific cross-sector opportunities where the insurance industry could be a key enabler to catalyse the transition in hard-to-abate sectors.


Alongside the research, we have presented a set of practical recommendations for the insurance industry to take forward, highlighting the opportunities to further support customers. We need to ensure the collective management of the risks of transition, alongside the growth opportunities spurred on by new economic activities, as we seek to help businesses accelerate towards a more resilient and sustainable future.

John Neal

CEO of Lloyd's and Chair of the Sustainable Markets Initiative Insurance Task Force


Nick Studer

President and CEO of Oliver Wyman Group, Climate and Sustainability sponsor on the Marsh McLennan Executive Committee

The role of the insurance industry in catalysing the transition in hard-to-abate sectors

This report explores seven key sectors and technologies to understand their transition trajectory and identify the key challenges and risks they will face. This provides an overall picture of where the insurance industry can provide the necessary risk solutions to catalyse the transition.

Seven I	key	sectors	and	techno	logies
---------	-----	---------	-----	--------	--------

L Energy

Fusion

Mining

Aviation

Shipping

Space

Agribusiness

Summary of key risks and recommendations

- The top three challenging areas identified by real economy firms in their journey towards net zero are **reputation**, **financial planning**, **and profitability**. The research shows that, across all aspects of products and services, the insurance industry can do more to make our customers feel a **greater level of support**. We suggest this begins with **enhanced engagement**.
- 2. There are **opportunities** for the insurance industry to **innovate**, **evolve existing products to insure new risks**, **and expand capacity for existing risks**. Innovative insurance solutions, like new pooling solutions for pioneering technologies and capital relief solutions designed to boost financial investment, could drive global progress and accelerate industry transitions towards a more resilient and sustainable future.
- 3. The Insurance Task Force can draw upon the **cross-sector convening power** of the Sustainable Markets Initiative. **Cross-taskforce collaboration** could allow the insurance industry to engage with policymakers and gain access to key data that will enable our industry to better support the transition.

Marsh McLennan risk landscape for the transition and where the insurance industry currently provides support

Supporting the climate transition has been a central focus for both the Lloyd's market and wider insurance industry in recent years. There is an opportunity for the industry to support beyond existing insurance solutions by developing innovative risk solutions and partnering across industries to address wider transition challenges

	Planning and development	Construction	Operations	Later life
	Immature/slow progress across value chain (e.g., roll ou	Technological obsolescence leading to stranded		
Otrotonio vieko	Availability of adequate talent pool			assets/early retirement
Strategic risks	Uncertainty in market size and demand		Industry innovation degrading competitive advantage	
	Delays to siting and permit processes		IP theft degrading competitive advantage	
	Lack of appropriate offtake agreements (volume, length, price, FX)	Cost volatility (e.g., input costs, overheads, FX)		
Financial risks	Insufficient confidence in investment returns hindering fittime scales, FX, interest rates)	inancial decisions (e.g., company revenues,	Revenue volatility (e.g., price and volume fluctuations)	
-	Insufficient confidence in viability of novel technologies			
	Creditworthiness of counterparties (e.g., offtakers)			
		Weather impacts		
		Damage from novel technology malfunction		
		Performance and integration of technologies		
Operating risks		Cyber and terrorist attacks		
		Input/feedstock supply volatility (e.g., intermittency)		
		Supply chain disruptions		
		Contractors defaulting or failing to deliver		
Liability and				Mandated restoration or remediation
reputational risks		Legal fees or regulatory fines (incl. environmental and	d pollution, workers' compensation, physical damage, gree	nwashing)
115165	Reputational damages (e.g., environmental concerns, n			
Geopolitical	Nationalisation or exprop	priation of assets		
risks	Business disruptions or delays driven by political instable			
	Competitive disadvantages due to divergent environme			

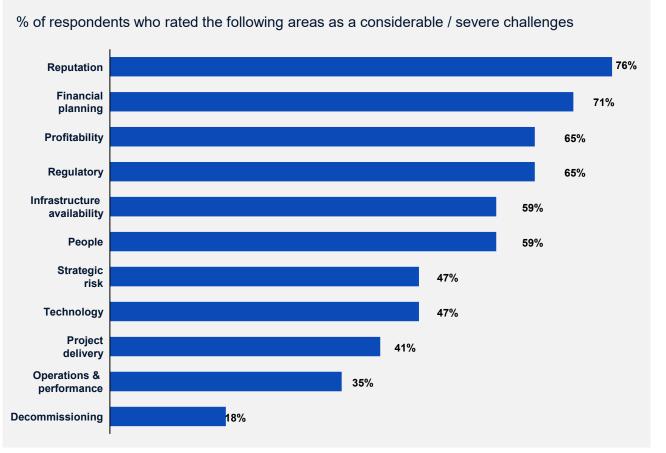
Conventional insurance Non-conventional insurance

Leveraging the insurance industry's risk management expertise and improving product visibility would support real economy firms' response to climate transition challenges

Report approach

We conducted research with CEOs of real economy companies in hard-toabate sectors. We aimed to understand the challenges they are facing, and the level of support they have received so far from the insurance industry, as they navigate their role in transition.

Key conclusions


The insurance industry **has an important role to play** in shaping the path to net zero, through evolving and deploying its risk transfer offerings and better articulating its **value proposition** to potential customers.

Established insurance products like construction, property and business interruption already have a well-understood role in mitigating some important challenges. However, there are fewer mature insurance offerings available for the **first-order strategic and financial risks** which firms see as their top challenges in the transition.

Although insurance risk transfer cannot address all risks, the industry's broader **risk management expertise** can play a crucial role in driving the transition.

Insurance runs the risk of being a (costly) afterthought, if it is seen as 'downstream' from a more urgent set of considerations that drive investment in the transition. To help catalyse the transition, insurance firms should increase the level of **engagement and collaborative problem solving** with real economy firms as well as finance and public sector partners.

Survey results: Challenges faced by companies in climate transition

Opportunities for insurers to draw on the cross-sector convening power of the Sustainable Markets Initiative to support the transition

Suggested focus areas

Sector	Solutions for the insurance industry to explore and build
Enorgy	1 Develop insurance-led pooling solutions for renewable projects, providing coverage at the portfolio level to banks supporting these projects
Energy	2 Engage with policymakers on expanding Offtaker of Last Resort schemes , e.g., expanding their application to more producers, geographies, and/or other categories of offtake
Aviation	3 Engage with policymakers on offering government-backed warrantees against changes in policy regarding SAF , e.g., blending mandates, subsidies, supply commitments for municipal waste
Shipping	4 Develop liability and physical damage coverage for ammonia bunkering , considering additional crew safety and physical damage risks posed
Agribusiness	5 Build out offering for soil health and fertilizer yield insurance , engaging agribusiness and regulators to encourage recognising soil as an asset class
Construction	6 Establish cross-industry and cross-geography data sharing structures for cross laminated timber (CLT), for which there is limited carrier underwriting appetite despite mature construction practices globally
ccus	 Extend tenure of policies for carbon capture / storage, accommodating long-duration of liability for carbon (writing policies up to ~10 years)

Executive summary

3

Sector deep-dives

Energy Fusion Mining Aviation Shipping Space Agribusiness

Recommendations

Sector transition pathways: Energy sector

Current state

LLOYD'S

Share of global emissions	High	Accounts for 40% of global emissions
Transition progress Medium		There has been an extensive development and wide deployment of renewable energy technologies globally. However, coal, oil and gas remain prevalent energy sources
Existing commitments	Medium	The Stated Policies & Announced Pledges scenarios highlight that there is still a need for an acceleration in commitments, in order to achieve 1.5°C outcome
Insurer involvement in transition	High	Close multi-year collaboration; wide range of products incl. technology performance insurance, equity contribution guarantee facility

Key Risks associated with the transition

- Dependence on infrastructure, including grid updates and expansion, interconnectors
- Unsuitable offtake agreements (e.g., length, price), uncertain markets and lack of demand signals
- Technological obsolescence from rapid innovation/advancements
- Volatility of renewable inputs (e.g., wind power) and challenges in forecasting
- Failures in energy storage and in grid stability leading to power outages
- Expensive maintenance and repairs due to limited supply of engineers, and/or damage-prone assets (e.g., offshore wind sub-sea cable damage)
- Volatility in energy prices and rising competition
- Optimising decisions around decommissioning and repurposing
- · Divestment/difficult demands from FIs while transitioning
- Legal or regulatory fines (incl. flaring fines, greenwashing fines, fines for missing targets)
- Inconsistent and evolving regulation hindering investments (e.g., onshore wind restrictions)
- Uncertainty around the role of carbon markets, incl. the structure and mechanisms

Classification: Confidential

Space

Fusion

Shipping

Fusion

Mining

Aviation

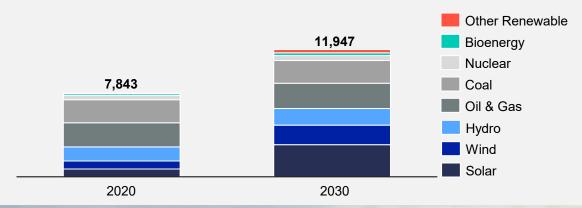
Shipping

Space

Sector transition pathways: Energy sector

LLOYD'S

Emerging and enabling technologies to the transition


The move towards sustainable energy sources will be pivotal in achieving global net zero targets.

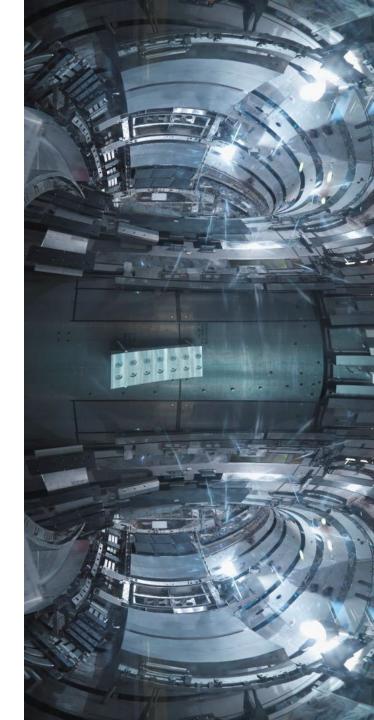
The insurance industry already offers a wide range of products that support the development of wind and solar projects. As these mature technologies continue to grow and expand, they will face unprecedented risks and challenges. Insurers will need to evolve and adapt the products offered to support the progression of these critical clean technologies.

Similarly, investment in emerging technology projects will likely increase, generating additional insurance capacity growth. Insurers can help to accelerate this investment through assuming a portion of the risk related to these new energy sources.

	Lever	Maturity
gies	Solar	Medium
technologies	Hydropower	High
tech	Wind	Medium
Key t	Hydrogen	Low
	Nuclear	Medium
es _	Lever	Maturity
Enabling technologies	Electricity grid	Medium
	Carbon capture (CCUS)	Low
	Battery storage	Medium

Vision for 2030 and beyond: when private sector expects commercial viability

Sector transition pathways: Fusion sector


Current state

Share of global emissions	N/A	Negligible as not yet operational; moreover, the technology will be a clean energy "solution" and therefore not significantly contribute to emissions
Transition progress	Low	Focus is on commercial viability; little consideration of sustainable processes (e.g., inputs, materials)
Existing commitments	Low	Company commitments are related to commercial provision, not to sustainability of operations
Insurer involvement in transition	Low	Insurers not involved in early development

Key Risks associated with the transition

- Uncertainty in timeframe for commercially viable fusion
- Uncertainty over broader power sector role for fusion at point of availability and in each location
- Lack of expertise in fusion hindering acceleration of supply chains and financial institution support
- Insufficient availability of long-term storage facilities for the energy created by fusion
- Uncertain costs of durable materials needed to withstand high neutron flux and high temperatures
- Long-term funding uncertainties for fusion with expected 10+ year return periods
- Higher cost of sustainably-sourced materials (e.g., metals used)
- Disrupted supply of deuterium and tritium inputs (or other isotopes used, such as helium-3)
- Risk of civil liability were an accident to occur, such as breach of confinement / inventory resulting in leaked tritium or mobilized activated products
- Lack of clear regulation for fusion differentiated from fission, incl. parts import and export
- Harm caused from improper treatment of radioactive materials, particularly when decommissioning

Classification: Confidential

Shipping

Mining

Aviation

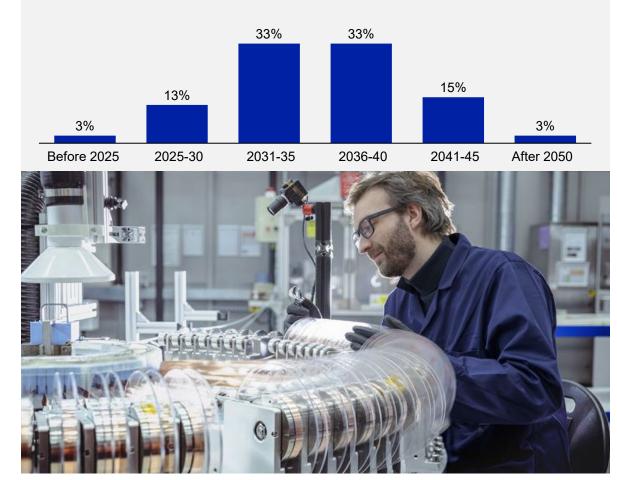
Shipping

Space

Sector transition pathways: Fusion sector

Emerging and enabling technologies to the transition

Fusion is the universe's most powerful form of energy. Its ability to provide clean, reliable, baseload power could make it a vital tool in the world's transition to net zero. Recent breakthroughs and advances in technology have proven the science, but the full fusion energy value chain still needs to be industrialised and commercialised.


The sector has attracted significant investment to date which is driving faster progress than ever before. Advances have been made in the necessary technology, enabled by both private and public sector funding.

There is an expectation that fusion energy could be commercially viable in the next ten years and that the insurance industry would have a central role to play in de-risking this. The construction of the first fusion plants is likely to be riskier than it is for more established fission plants as they will be first-of-a-kind. But fusion's operational risks will be significantly lower than fission; fusion carries no risk of a catastrophic nuclear reactor meltdown or high activity, long-lived nuclear waste, and has a lower risk supply chain.

	y logies	Lever	Maturity
	х S	Magnetic confinement (e.g., tokamaks, stellarators)	Low
	tech	Inertial confinement (e.g., laser compression)	Low
	es _	Lever	Maturity
	Enabling technologi	Renewable energy availability on grid	Medium
		Durable materials for prolonged reactions	Low
		Scaled-up isotope production	Medium

Vision for 2030 and beyond: when private sector expects commercial viability

% response out of 40 respondents in Fusion Industry Association survey (2023)

Sector transition pathways: Mining sector

Current state

Share of global emissions	Medium	Accounts for 2-3%1 of global emissions	
Transition progress	Low	Some use of renewable energy for power. Limited use of emissions reduction levers - largely dependent on upstream and downstream emission reductions	
Existing commitments	Medium	All ICMM members (24 of largest global miners) have committed to Net Zero (Scope 1 & 2) by 2050, setting Scope 3 targets, and reporting on progress.2	
Insurer involvement in transition	Medium	Close collaboration with insurers, but limited transition focus	

Key Risks associated with the transition

- Uncertainty in viability of lower-emission operations (e.g., safety concerns with operating electric fleet in high temperature climates and undergrounds, and challenges due to limited lifespan of mines)
- Immature transition of upstream and downstream activities preventing achievement of targets, e.g., downstream green steel production, low-carbon shipping methods
- Unclear downstream willingness to pay 'green premium' for environmentally-mined/refined products
- Lack of expansion resulting in supply shortages of critical minerals for clean technologies
- Rapid technological and policy change creating uncertainty and barriers to investment
- Lower-emission fuels damaging fleet/machinery
- Reputational damages due to local pollution or biodiversity impact
- Uncertainty in regulatory expectations and trends
- Geographic and land access limitations to establishing on-site renewable energy supply (e.g. land with the right tenure and environmental approvals) or accessing renewables through the grid

Note: Higher proportion of emissions may be allocated to mining due to inclusion of coal | Source: IGF 2022 (1); ICMM (2); Oliver Wyman analysis

Classification: Confidential

gribusiness

Fusion

Shipping

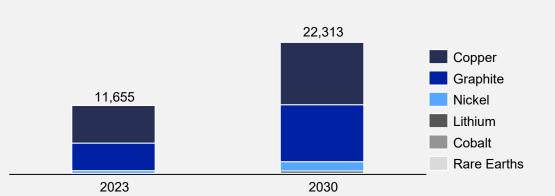
Mining

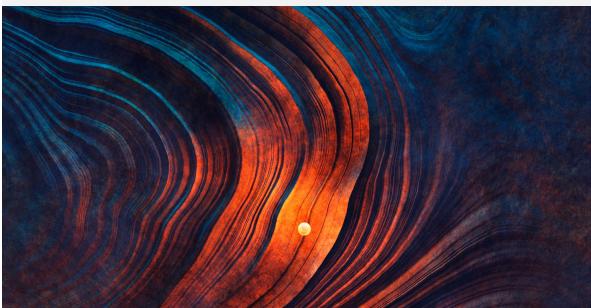
Aviation

Shipping

Space

Key technologies for the mining emission reduction


The mining sector will play an integral role in the move towards renewable energy sources and achieving net zero. Renewable energy technologies like solar panels, wind turbines, and electric vehicles (EVs) require a significant amount of minerals like lithium, copper, nickel, and rare earth elements. As these clean technology projects mobilise and expand, the global demand for key minerals is expected to nearly double.


To protect the long-term success of new clean technologies the mining industry will need to scale up production to meet the projected demand. Insurers will have a key role in supporting this effort, by derisking the investment needed in new technologies.

Alongside this, insurance can continue to support the carbon abatement of the wider mining industry, providing the risk solutions needed to enable the development and production of renewable energy and fuel sources, which are critical to the operation of the mining sector.

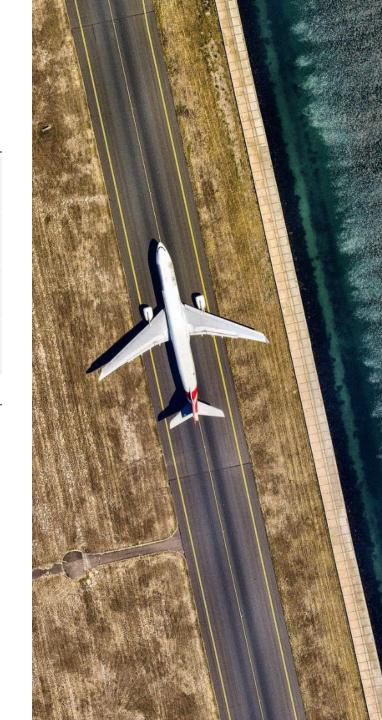
	Lever	Maturity	Mining plays	a broader role
(0	Renewable energy supply (on-site)	Medium	Mineral	Reliant clean tech
ologies	Bio/synthetic fuels for vehicles/machinery	Low	Copper	
Key technologies	Electrification of vehicles/machinery	Medium	Graphite Nickel	
Ke	Downstream metals production (e.g. green steel)	Low	Lithium	
	Energy efficiency	High	Rare earths	

Vision for 2030: Global mineral demand for clean tech, Steps scenario, kt (kilotonne)¹

Source: IEA Critical Minerals 2022 (1)

Sector transition pathways: Aviation sector

Current state


Share of global emissions	Medium	Accounts for 3%1 of today's emissions
Transition progress	Low	Low penetration of SAF and immature alternative propulsion technologies, but a well-understood pathway
Existing commitments	Medium	Airline alliances have made commitments to operational efficiency improvements, SAF and CCUS
Insurer involvement in transition	Medium	Engaging with insurers on BAU and trials; some green insurance policies offered

Key Risks associated with the transition

- Dependence on supply chain transition, incl. on SAF / SAF lubricant production, refuelling, OEMs etc.
- Complexity in rolling out supporting infrastructure to electrify ground service equipment
- · Lack of confidence / robustness in SAF offtake demand and broader flight demand
- · Uncertainty in customer willingness to pay a 'green premium' for lower emissions flights
- Higher aircraft complexity / new designs increasing maintenance and repair costs
- Unknown viability of alternative propulsion technologies
- High / fluctuating SAF costs
- Extreme weather impacting flight operations, disrupting supply chains and/or causing damage
- Damage caused by novel technology (e.g., explosions during hydrogen refuelling)
- Legal or regulatory fines (incl. greenwashing, low-pollution rule non-compliance etc.)
- Mandated offsets, CCUS or carbon market participation
- Divergence in national regulations complicating operations and increasing competition (e.g., safety restrictions on new technologies, carbon taxes)

Source: International Air Transport Association (1); Oliver Wyman analysis

Classification: Confidential

Fusion

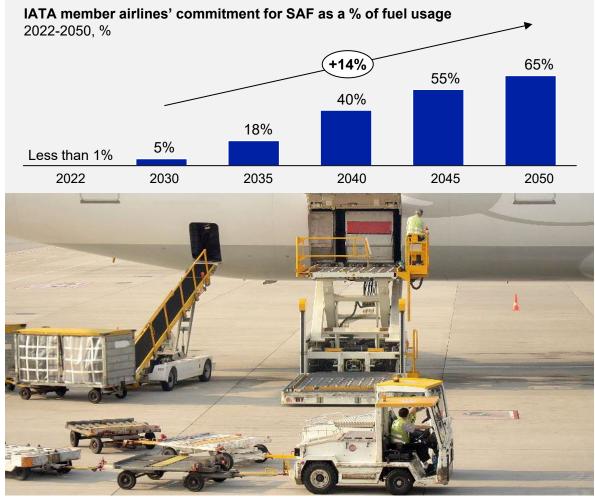
Shipping

Fusion

Mining

Aviation

Shipping


Key technologies for the aviation emission reduction

There are two critical areas of carbon abatement for the aviation industry: reducing the economy's reliance on aviation as a method of transportation and increasing the use of Sustainable Aviation Fuels (SAF) in favour of traditional fuel sources.

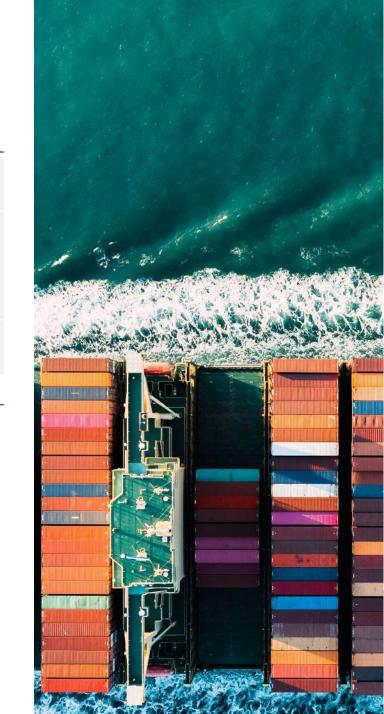
Insurance has a pivotal role in decarbonising aviation by de-risking emerging energy technologies and sustainable fuel alternatives. Airlines have already made the commitment to increase their use of SAF. However, to realise that ambition, further investment and development will be needed to bring the production of these fuels to a level of maturity and scale that can sustain future demand. Insurance will be critical in supporting these projects.

	Lever	Share of CO ₂ reductions	Maturity	Description
Ň	SAF		Low	Low/zero carbon fuels (e.g., Hydroprocessed Esters and Fatty Acids (HEFA), Gasification)
Key technologies	CCUS		Medium	Offsets/abatements
Key te	Alternative propulsion		Low	Hybrid/electric/hydrogen propulsion technologies
	Fleet/operational optimization	\bigcirc	High	Newer generation fleets; optimised flight routes

Vision for 2030 and beyond: IATA SAF commitments¹

Source: International Air Transport Association (1); Oliver Wyman analysis

Sector transition pathways: Shipping sector


Current state

Share of global emissions	Medium	Accounts for 2%1 of global emissions		
Transition progress	Low	Immature technologies, with reluctance to finance/support enablers and less pressure due to importance for global trade		
Existing commitments	Medium	Whilst there are commitments to building low/no-emission fuel plants, progress limited by lack of financial support to reach FIDs		
Insurer involvement in transition	Low	Poseidon Principles for Marine Insurance set guidelines for insurers to promote sustainability in shipping, despite additional insurability challenges		

Key Risks associated with the transition

- Bunkering of highly flammable and corrosive fuel making it difficult to get insurance
- Low availability/supply of zero emission fuels
- Lack of/immaturity of fuel infrastructure (transport, storage, refuelling services)
- Immature tech and infrastructure making it difficult to create cost estimates
- Uncertainty in government support to develop market
- Uncertain markets, lack of demand signals, and reluctancy to take offtake agreements
- Balancing increasing costs to drive the transition and the impact of that on social issues such as food security, disaster response, socio-economic progress
- Competition for funding/financing World Bank and MDBs ramping up but hydrogen fuel funding, for example, can go to lots of things, not just shipping
- No clear winner of alternative fuels so need to remain flexible (e.g., with hybrid engines or multiple types of ship on order)
- Crew safety, especially when using ammonia fuel

Classification: Confidential

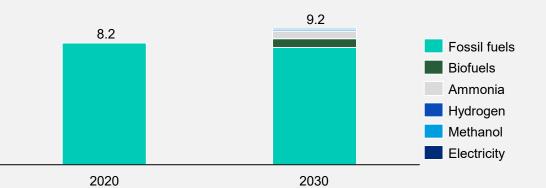
Shipping

Fusion

Mining

Sector transition pathways: Shipping sector

Emerging and enabling technologies to the transition


The shipping industry accounts for approximately 2% of total global CO2 emissions, and the International Energy Agency (IEA) estimates international shipping activity will more than double by 2050. The use of alternative marine fuels is integral to reducing GHG emissions from shipping.

Insurance can support in the decarbonisation of shipping by de-risking the ability to deploy and use emerging energy technologies and sustainable fuel alternatives, with each alternative having different characteristics and associated risk profiles.

Progress has been slower than other sectors, but investment is rising. There is a need not only for the de-carbonisation of the industry, but for shipping to be ready to transport the new green fuels and technologies needed to reach a net-zero future.

Key technologies	Lever	Maturity
	Liquefied natural gas (LNG)	Medium
	Methanol-based fuels	High
	Ammonia	Medium
iy te	Liquid hydrogen	Medium
Ke	Higher efficiency ships	High
	Lever	Maturity
g jies	Dual-fuel engines	Low
olin olog	Fuel distribution infrastructure	Medium
Enabling technologies	Fuel feedstock supply chains	Medium
	Electricity grid	Medium
	Optimising routes	High

Vision for 2030: IEA Projected energy consumption in international shipping in the NZE scenario, EJ (ExaJoules)¹

Sector transition pathways: Space sector


Current state

Share of global emissions	Low	Makes up a negligible proportion of global emissions, despite emissions intensity of fuels
Transition progress	Medium	Low priority for space companies, though efficient engines, ground operation improvement and cleaner fuels being explored and implemented
Existing commitments	Low	Industry in early phases of making commitment to sustainable operations, currently without a climate focus
Insurer involvement in transition	Low	Space insurance is focused on launch / satellite risk with limited appetite for brand- new technologies - several focus on ESG and limit support of certain activity, e.g., space tourism

Key Risks associated with the transition

- Uncertainty in viability of new designs (increased efficiency engines, reusable rocket launchers, satellites designed for demise) and new technologies (space-based solar power)
- Lack of low-carbon fuel production and infrastructure making low carbon launch unviable
- Energy supply disruptions to ground operations, incl. storage failures where renewables used
- Long-term funding uncertainties for novel technologies (incl. space-based solar power, asteroid mining) with 15+ year waits for returns
- High cost of repairs of reusable launch vehicles compared to single-use vehicle production
- Newer designs failing at launch / in-orbit, destroying high value asset and losing expected revenue
- Limited data availability around performance and potential risks and hazards in orbit, with an increasingly cluttered space environment posing greater threat
- Missed launch slots (due to weather events, construction delays etc.) delaying project ~12 months
- Insurer unwillingness to cover new technologies due to significant losses in the past
- Uncertainty created by lack of binding space regulation and varying policies

Classification: Confidential

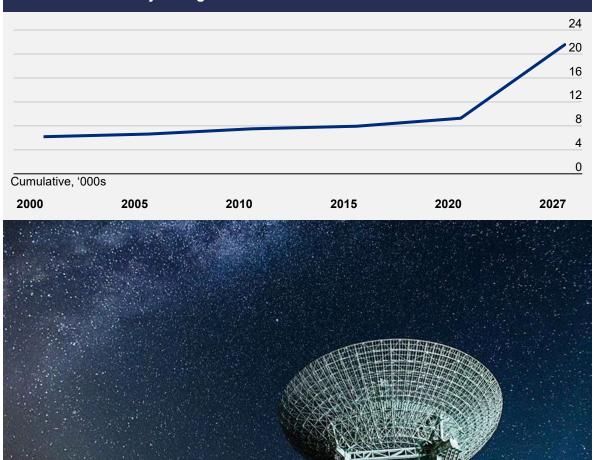
Fusion

Mining

Aviation

Sector transition pathways: Space sector

Emerging and enabling technologies to the transition


We rely on a safe and sustainable space domain to understand our planet and to support fast and reliable communications critical to the global economy.

The number of active satellites in orbit as doubled since 2021 to 10,000, the majority of these being in Low Earth Orbit, which is becoming increasingly cluttered with space debris. Space sustainability is more than keeping satellites in orbit, it is about maintaining the safety and health of the space environment to keep space a valuable resource for many generations to come and to reduce the carbon intensity of launches. There is an opportunity for insurance to support and derisk investment in space.

The space sector may be the answer for the supply of vital minerals needed for developing clean technologies, such as renewable energy systems, electric vehicles, and advanced batteries. Asteroids can contain high concentrations of valuable minerals, which could be harvested and brought back to Earth or used directly in space.

	Lever	Maturity	Space plays a broader ro	
es ssions	Low-emitting fuels	Medium	Lever	Maturity
logi	Re-usable launch vehicles	Medium	Earth observation / monitoring	High
r techno ir space	Satellite longevity operations	Low	Automating precision agriculture	Low
Key			Air traffic/maritime route optimization	High
for	Energy efficiency and renewables		Forestry fire prevention	Medium
	at manufacturing / launch sites		Space based solar power	Low
			Asteroid mining	Low

Vision for 2030: Projected global satellite launches¹

Source: CelesTrak (1); Oliver Wyman analysis

Mining

Aviation

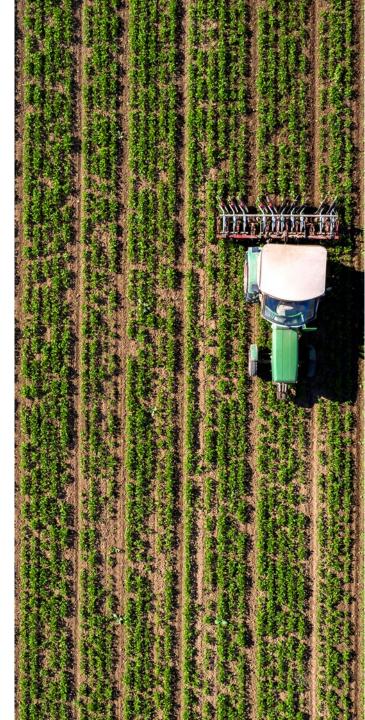
Shipping

Space

Agribusiness

Sector transition pathways: Agribusiness sector

Current state


	Share of global emissions	High	Accounts for 22%1 of global emissions
)	Transition progress	Medium	Varying maturity of technologies and practices; work to be done on scaling transition activities globally
	Existing commitments	Medium	Buyers are committed, but limited by ambition of small-scale farmers and producers
	Insurer involvement in transition	Low	Focus has been on access to funding (support for crop yields and protection due to climate change), less on transition

Key Risks associated with the transition

- Lack of small-scale farmer awareness of key technologies for the transition and their importance
- High capital costs required to roll out relevant technologies
- · Lack of golden standard causing diverging adoption of different technologies across farms
- Complex value chains / ecosystems making it difficult to co-ordinate, such as by identifying shared cost opportunities or understanding impacts across supply chain
- Downstream unwillingness to pay 'green premium' for more sustainable practises
- Physical impacts of climate change causing disruption (e.g., droughts, heat stress, severe weather events), reduced yields or yield loss
- Reduced supply chain robustness due to climate change (e.g., due to growing location unsuitability)
- · Pressure to reduce impact across emissions, biodiversity, nature, deforestation etc. in parallel
- Lack of sector-specific knowledge within financial services providers
- · Varied access to government grants, fundings and incentives for farmers
- Poor soil health and nutrient content

Source: IPCC (used as there was no comparable IEA % for agribusiness) (1); Oliver Wyman analysis

Classification: Confidential

Fusion

Mining

Aviation

Sector transition pa	athways: Agribusi	ness sector
----------------------	-------------------	-------------

Emerging and enabling technologies to the transition

Traditional fertilisers, rich in harmful chemicals, have contributed to soil degradation, water pollution, and greenhouse gas emissions. As farmers transition to and implement regenerative agricultural practices, this often requires financial investment to buy new machinery and/or employ more staff. In the first few years of this transition process, there can also often be a dip crop yield.

Offloaders or food companies may offer farmers increased prices or incentives for regenerative agriculture grown produce, and depending on how this is structured, there could be financial losses should the crops fail.

Insurance can de-risk the financial investment of the farmer and/or offloader. This revenue protection may enable banks to lend on better terms to farmers in transition and de-risk the investment for asset managers, thereby unlocking significant flows of capital to finance regenerative practices.

Ś	Lever	Maturity
Key technologies	Regenerative agriculture and sustainable production practices	Medium
nole	Anaerobic digestion	Medium
ech	Alternative proteins/shift in consumption	Medium
ey t	Renewable energy use on farms	Medium
×	"Green" machinery and transportation methods	Medium
	Lever	Maturity
gies	Animal feed additives/ optimisation	Low
	Reduction in food loss or waste	Medium
Enapling technologies	Land conservation & natural carbon sinks	Low
	Optimised use of land	Medium

Source: Insuring a Sustainable Future, SMI Insurance Task Force 2023 (1); Oliver Wyman analysis

Abatement Measure	2050 vs. 2019	Development Outlook
Diet Shifts	-39%	Consumption of lamb and beef needs to fall by 45% in the net zero pathway
Animal protein production	-13%	Selective breeding, feed-mix optimisation and methane/ nitrification inhibiting additives to reduce animals' GHG
Crop production	-9%	Low/no-tillage production, improved fertilisation practices and better water & irrigation management all pollute less
Reduction in food waste -8%		Food waste and loss would need to fall 13% to a 20% global average by 2050
Electrification	-3% -	Electric farm vehicles fully replace internal combustion vehicles by 2050 under the Net-Zero pathway

Vision for 2050: Agricultural abatement options for NZE scenario¹

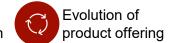
Moturity

Executive summary

3

Sector deep-dives

Recommendations



Key recommendations for insurers to support real economy businesses: across innovation, evolution of existing products and expanded capacity

Market innovation/ transformation	Evolution of existing products Evolved product offerings and/or applications	Expanded appetite/ capacity Increased capacity for existing insured risks
Reconsidering the market approach	to new insured risks	increased capacity for existing insured risks
New, insurance-led pooling solutions to cover low appetite risks	Improvement and widescale adoption of build-back better wordings	 Increase catastrophe risk availability, considering: Insurability, incl. adequacy of limit for insured Breadth of capacity suppliers (e.g., ILS)
Design of insurance solutions to enable capital relief for financial services, to allow greater investment	Evolution of BI product wordings to accommodate technological advancement	Underpin asset performance for novel technologies (e.g., performance guarantees)
Use of long-term risk capacity of life insurance balance sheets to invest in long duration risk exposures	Longer tenure of policies to improve coverage and provide price stability	Credit risk for green infrastructure projects as a lever for crowding-in investment
Coordinated cross-industry data sharing for novel technologies and transition assets	Legal liabilities and damages caused by first-of-a-kind technologies (e.g., battery storage, ammonia bunkering)	Accelerate the deployment of solutions to support creation and running of mutuals and captives
Exploring partnerships with banks to harmonize risk assessment approach	Credit insurance for exposure to portfolios of off takers (e.g., buying groups) or of start-up companies	A range of levers can be considered in exploring how to expand appetite/capacity for existing offerings (e.g., better risk mitigation, lower cost distribution/underwriting/claims handling, new capacity providers and pooling approaches, etc.)

Identified opportunities to develop insurance propositions for the transition (1 of 4)

appetite

Innovation focus area	Current situation & limitations	Proposed innovation	Sector-specific examples	Degree of innovation
New, insurance-led pooling solutions to cover low appetite risks	Market struggles to provide capacity for first-of-a- kind technologies or for large cat risk concentrations	An MGA, a group of carriers involved in insuring transition risks, or the Lloyd's market could set up pooling arrangements to enable the provision of cover across hard-to-insure risks in a diversified way	Large-scale energy transmission projects	- - - -
Design of insurance solutions to enable capital relief for financial services, to allow greater investment	 Insurance can allow a degree of credit relief for banks, thereby facilitating cheaper borrowing, e.g., surety, or credit relief insurance Uncertainty over expected pay-out reduces capital relief impact 	Strengthen and innovate capital relief mechanisms, including increasing transparency of products and confidence in pay-out (e.g., parametric solutions)	Credit insurance for renewable-focussed lenders	- - - -
Use of long-term risk capacity of life insurance balance sheets to invest in long duration risk exposures	Transition investments often have longer return periods than appeal to most investors, inhibiting financing of transition-technologies even where insurers are willing to provide credit products	Utilise long-term risk capacity of life insurance balance sheets to invest in long duration risk exposures	Investments in fusion developers	- - - -
Co-ordinated cross- industry data sharing for novel technologies and transition assets	Limited history and availability of risk and claims data on transition technologies restricts insurer confidence	Encouraging increased sharing of standardised data by the real economy sectors and third parties, as well as across the insurance industry (whilst maintaining confidentiality and competitive IP)	Sharing data on performance history of CCUS methods	

appetite

Innovation focus area	Current situation & limitations	Proposed innovation	Sector-specific examples	Degree of innovation
Exploring partnerships with banks to harmonize risk assessment approach	Lenders/investors do not generally have access to insurer risk assessment insight during their due diligence (instead relying on other third parties), nor is there proactive coordination of risk assessment approaches	Explore partnerships with finance providers to better coordinate risk assessment and use insurance industry insight to support higher confidence in transition-related loans, investments and acquisitions; also ensuring insurance conditions set by banks are feasible	Sharing assessment of expected losses for renewable projects under consideration for investment	
Improvement and widescale adoption of build-back better wordings	 Repairing with like and kind misses an opportunity to improve the sustainability and/or climate resilience of existing assets after a loss event Build back better wordings have been developed in the market but are not widely adopted 	Efforts to evolve 'build-back better' offerings, increase their affordability for insureds, and drive greater uptake across the industry	Repairing aircraft with more efficient engines	
Evolution of business interruption wordings to accommodate technological advancement	Business Interruption cover does not generally accommodate the impact of technological advancements which can cause disruption by, e.g., increasing repair costs and extending wait times for parts	Evolve wordings for Business Interruption to accommodate and maintain access to rapid technological advancements, potentially covering additional cost to get insureds to the front of an OEM's queue	Improvements to turbines produced at wind-farms outpacing roll-out at wind farms	

Identified opportunities to develop insurance propositions for the transition (3 of 4)

appetite

Innovation focus area	Current situation & limitations	Proposed innovation	Sector-specific examples	Degree of innovation
Longer tenure of policies to improve coverage and provide price stability	Financial investors often desire certainty around their coverage availability over a 10y+ period , whereas insurer appetites tend to be for shorter tenures	 Extending tenure of policies/offering longer- term capacity where appropriate, thereby: Enabling contract price stability for the insured, including with renewal clauses Accommodating unique longer-term liabilities, such as with carbon storage Providing greater certainty of cover over the entire project lifecycle 	Extended liability for carbon kept on balance sheets (~10 years)	
Legal liabilities and damages caused by first- of-a-kind technologies	 Insurance structure relies on data on past performance, hindering first-of-a-kind technology deployment Sector appetite varies, with insurers more able to cover novel technology in certain sectors (e.g. more openness for aviation than energy) 	Develop legal liability and property damage cover for novel technologies supporting the transition, facilitated by early engagement	Battery storage Ammonia bunkering, with risks posed to workers unlike those of traditional shipping fuels	C
Credit insurance for exposure to portfolios of offtakers or of start-up companies	 Credit insurance available for single offtakers, however single offtakers can be insufficient for large investments, resulting in buying groups, which credit insurance needs to serve Offtakers may also include start-ups, for which credit insurance is harder to secure 	Provide portfolio credit insurance for offtake agreements involving multiple offtakers, including in the case of buying groups, and to start-up companies	SAF offtake agreements with multiple airlines	

Identified opportunities to develop insurance propositions for the transition (4 of 4)

Evolution of Expanded appetite

Innovation focus area	Current situation & limitations	Proposed innovation	Sector-specific examples	Degree of innovation
 Increasing catastrophe risk availability Insurability Adequacy of limit Breadth of capacity suppliers (e.g., ILS) 	 Increasing natural catastrophe risks driven by climate change, with high severity and probability of loss events limiting insurability or resulting in insufficient limits The appetite is also restricted if there is insufficient diversification amongst capacity suppliers (e.g., lack of risk transfer to investors through insurance-linked securities) 	Increasing capacity/coverage through relevant market innovations (e.g., pooling, data sharing), improved risk mitigation (through real-economy education and risk engineering services), and cheaper distribution/underwriting/claims operating models (e.g. parametric)	Large offshore wind projects Weather-related disruptions to feedstock for biofuels	
Underpinning asset performance especially for novel technologies	 Existing performance guarantees in the market, offered by a very limited number of insurers Legal restrictions prevent policies covering financial under-performance of asset, such that focus must be on physical performance 	-	OEMs providing low- emitting generators seeking to guarantee asset achieves a specified level of electricity generation	
Credit risk for green infrastructure projects as a lever for crowding-in investment	Credit risk insurance well-established, though large-scale infrastructure projects less often the target, especially in emerging economies, which reduces pool of investors	-	Port redevelopments accommodating greener shipping fuels	
Accelerate the deployment of solutions to support creation and running of mutuals and captives	Hard-to-insure risks may be best served by captives, though businesses may lack the necessary capital or knowledge	Accelerate existing solutions supporting mutuals and captives, including with their establishment and then providing adjacent insurance covers and services	Renewable energy producers	

Opportunities for insurers to draw on the cross-sector convening power of the Sustainable Markets Initiative to support the transition

Suggested focus areas

Suggested activity Innovation area or critical engagement	Type of solution	Sector	Key stakeholders
Develop insurance-led pooling solutions for renewable projects, providing coverage at the portfolio level to banks supporting these projects	Market innovation/ transformation	Energy	Financial Services Task Force Energy Transition Task Force
Establish cross-industry and cross-geography data sharing structures for cross laminated timber (CLT), for which there is limited carrier underwriting appetite despite mature construction practices globally	Market innovation/ transformation	Construction	Sustainable Buildings Task Force Regional insurers
Develop liability and physical damage coverage for ammonia bunkering , considering additional crew safety and physical damage risks posed	Evolution of existing products	Shipping	Lloyd's Lab
Extend tenure of policies for carbon capture/storage, accommodating long-duration of liability for carbon (writing policies up to ~10 years)	Evolution of existing products	CCUS	CCUS Task Force Lloyd's Lab
Build out offering for soil health and fertilizer yield insurance , engaging agribusiness and regulators to encourage recognising soil as an asset class	Evolution of existing products	Agribusiness	Agribusiness Task Force incl. Yara International; Lloyd's Lab
Engage with policymakers on expanding Offtaker of Last Resort schemes, e.g., expanding their application to more producers, geographies, and/or other categories of offtake	Support expanded appetite/capacity	Energy	Governments/regulators Energy Transition Task Force
Engage with policymakers on offering government-backed warrantees against changes in policy regarding SAF, e.g., blending mandates, subsidies, supply commitments for municipal waste	Support expanded appetite/capacity	Aviation	Aviation Task Force Governments

Disclaimers

This document is not intended for distribution to, or use by, any person or entity in any jurisdiction or country where such distribution or use would be contrary to local law or regulation. It is the responsibility of any person communicating the contents of this document, or any part thereof, to ensure compliance with all applicable legal and regulatory requirements.

The content of this document does not represent a prospectus or invitation in connection with any solicitation of capital by Lloyd's. Nor does it constitute an offer by Lloyd's to sell securities or insurance, a solicitation of an offer to buy securities or insurance, or a distribution of securities in the United states or to a U.S. person, or in any other jurisdiction where it is contrary to local law. Such persons should inform themselves about and observe any applicable laws.

This document has been produced by Lloyd's and Marsh McLennan or its affiliates ("Marsh McLennan") for general information purposes only and is not intended to address the circumstances of any particular individual or entity.

While care has been taken in gathering the data and preparing this document, Lloyd's and Marsh McLennan do not make any representations or warranties as to its accuracy or completeness and expressly excludes to the maximum extent permitted by law all those that might otherwise be implied. Lloyd's and Marsh McLennan accept no responsibility or liability for any loss or damage of any nature occasioned to any person as a result of the acting or refraining from acting as a result of, or in reliance on, any statement, fact, figure or expression of opinion or belief contained in this document. This document does not constitute advice of any kind.

No one should act on this document without appropriate professional advice after a thorough examination of the particular situation. Any recipient shall be entirely responsible for the use to which it puts this document. This document has been compiled using information available to us up to its date of publication.